Cost—léﬁéﬁt'lﬁ,,ﬂ es

“Defylng the ﬁcn:r rV|Ces Deathstar

o

¢ Raimond Brookman

Principal Arch@ctg oy

I nfo sljgﬁvoa{;,t <) @raimiondb

II‘ o' '\.
" ¥ 3

4 Past Problems, where did we come from?

essentials
* “Monopoly”

* Single Stack
* Sync/Async
* Batch

* Clustered

\

¢ Focus: Automate

(W) @raimondb

* Focus: Serving
the organization

* Decentralized
* ACID

* Single stack

* Sync

* Batch/Online
» Scale Up

\

Client / Server

/

/U

[+ Focus: “Enabling the\

Web”

* Decentralized

* 2PC

* Single Stack

* Sync

* Online

* Logic Scale Out,

Qata Scale Up

/ﬁ pata

Consistency & B2B
STP

» Centralized Design
« SPOT

* Web B2B standards
* Sync

* Online

* Scale Out

\ foundations

/

* Clustered, Avanced
\E:ale Out

* Focused on Scaling &\

Growth of #customers

* Decentralized (again)
*EC

* Polyglot (reality)

* Async

* Online

/

4 Solution by Microservices

« Decentralized
— Small units
— Clear goals, easier change

* Autonomy
— Independent choices (polyglot)
— Autonomous releases

« This is great, let’s scale it!

— Less dependencies and coordination

©
— Oh wait.....

(W) @raimondb

4 Dangers of large microservices ecosystems

@raimondb

Cause of Current Challenges

“Pile of Rubble Architecture” “‘Reuse is evil” Unmanaged
Emergence

[“Smaller is better”

>

C\-

Better

IS

Smaller

4 What is more complex? @ rooreoatc

B Autonomy Boundary

4 Measuring Complexity

* Qualitative Measure:
— Scott Woodfield’s research (1979) An Experiment on Unit Increase in Problem Complexity
— Summarized by Robert Glass (2003) in his book Facts and Fallacies of Software Engineering
— Reformulated by Roger Sessions (2012) in the blog post The Equation every Enterprise Architect
Should Memorize — Roger Sessions

Glass’s Law:

For every 25% increase in problem complexity (F), there is a 100% increase in
complexity (C) of the software solution.

https://www.computer.org/web/csdl/index/-/csdl/trans/ts/1979/02/01702600.pdf
https://en.wikipedia.org/wiki/Robert_L._Glass
http://simplearchitectures.blogspot.co.uk/2012/03/equation-every-enterprise-architect.html

4 Calculating complexity

 Session’s Summation:

m
C = 2(103.1 log(bf;) + 1031 log(cni))
=1

— bf; = number of functions inside a module
— cn; = number of connections to other modules

« Brookman’s DDD Complexity:
* bf; = number of Aggregates inside an Autonomy Boundary

* cn; = number of distinct Aggregate-Bound Commands & Events dependencies to
other Autonomy Boundaries

y

4 Example: Fully Connected Aggregates

Monolithic Minimalized Optimized
Context contexts contexts

\ . \(»
X

a

C = 259 C = 887 ¢ =120

4 Back to our first Question...

4 N

C =631

What do we learn from this?

« YMMV on system complexity depending on connectedness
— Disclaimer: Formula needs to be tuned per organization

» To keep the system level complexity low:
— Minimize number of external connections per module
— Minimize number of aggregates per module

« Balancing act of Cohesion & Loose Coupling
— Components that must change in unison and / or evolve together should be co-located
In the same Autonomy Boundary
— This automatically leads to “clusters” of aggregates that have heavy functional
interdependencies

y

4 But | want to scale my services
iIndependently!

» There a more reasons for deploying separate
services than functional autonomy

» The previous exercise was about
Autonomy Boundaries.

* Microservices
— are inside an Autonomy Boundary
— have their own
- A contains 1+ Aggregates

« Complexity is mostly dependent on coordination,
which is hardest across Autonomy Boundaries

’ Aggregate
D Autonomy Boundary

Deployment Boundary

®

®

So how does this fit to
Bounded Contexts?

 Bounded Contexts allow for independent
models and Ubiquitous Language

* S0 it is an Autonomy Boundary

* | often see this confused with Deployment
Boundaries

* Pro Tip: follow Conway's Law and make
sure a Bounded Context is the
responsibility of a Single Team

’ Aggregate
D Autonomy Boundary
D Deployment Boundary

e ©

®

4 Managing Complexity Conclusions

« Smaller is not always better
— Don’t just smash your monolith into a “Pile of Rubble”

« Clear Autonomy Boundaries are most important!

AAAMAAMARA
AMAMAAMBARA

Wider

ing a

Hav
View

Finding the Business Domains

>

Event Storming

e ‘- — — —

Sreat Tor bottom-upian aly / S
. JC:M_L‘_/CN = Bounded Contex

r sq
. V\/orf’“ WeEllWRER ™S U’M WmiﬁL

—E.0: Lean Stali=up, NEVW SEIVICES -
| —

J

IO

—

— sINEESEergEaieRmE BIg RICIUEN N ager
| oUrlr ZAUORS

: | — —
@ra : e
T

Business Capablility Mapping : Domains

Client Engagement

Omni-channel Client Interaction [Monitoring y
Packaged Marketing Advice Sales Service
Product Requests
. . Offering
® Great for Blg PlCture | Online | Online | Online | Online | Online
| Offine | Offine | Offine | Offine | Offine
° Iden“fy DOtentlal [Monitoring [Monitoring [Monitoring [Monitoring [Monitoring

eXtraCtab|e Su b Service Operations

: Product (concept)- Packaged Product Management Value Added Services
Domains ° °

Development
| Product . .
Combinations & options elfiii: Cllie

Invest Finance

| portfolio | pricing Management | Management

Payments Savings Investing Financing

| Development | Development | Development | Development
| Management | Management | Management | Management
| Agreements | Agreements | Agreements | Agreements

| Execution | Execution | Execution | Execution
| Monitoring | Monitoring | Monitoring | Monitoring

Asset management

(W) @raimondb

Business Capablility Mapping : Domains

Client Engagement

Omni-channel Client Interaction [Monitoring y
Packaged Marketing Advice Sales Service
Product Requests
. . Offering
 Local Monitoring ToRiE TN | NoREmEN | owmen | [onRen | [Nonmen
. - | Offine | Offine | Offine | Offine | Offine
ChO|CeS for Ag”'ty? [Monitoring [Monitoring [Monitoring [Monitoring [Monitoring

Service Operations

¢ A CommOﬂ Ana|ytICS Product (concept)- Packaged Product Management Value Added Services

Development

Platform with Local [Pedw T T
Combinations & options

Invest Finance

SOIUt'OﬂS’> | portfolio | pricing Management | Management

Payments Savings Investing Financing

M | Development | Development | Development | Development
* Or a separate Capability -
| Management | Management | Management | Management

Oﬁenng Serv|ces to | Agreements | Agreements | Agreements | Agreements
Other Doma”']S'? | Monitoring | Monitoring | Monitoring | Monitoring

Asset management

(W) @raimondb

Business Capablility Mapping : Domains

Client Engagement

Omni-channel Client Interaction [Monitoring y
Packaged Marketing Advice Sales Service
Product Requests
Offering
» Local Agreement IOmonine 7N | Uonmen | oninenn | uoninenn | onmen
[offine [omne [Offine [Offne [Offine
Management [Monitoring [Monitoring [Monitoring [Monitoring [Monitoring

SOlutlonS’) Service Operations

Product (concept)- Packaged Product Management Value Added Services
Development

« Or centralized? | combinaione&options | | Client Ciient

Invest Finance

| portfolio | pricing Management | Management

Payments Savings Investing Financing

| Development | Development | Development | Development
| Management | Management | Management | Management
| Agreements | Agreements | Agreements | Agreements

| Execution | Execution | Execution | Execution
| Monitoring | Monitoring | Monitoring | Monitoring

Asset management

(W) @raimondb

Business Capablility Mapping : Domains

Client Engagement

Omni-channel Client Interaction [Monitoring
Packaged Marketing Advice Sales Service
Product Requests
. Offering
* Local Client onne — [Onine || [Online [Online |
[Offine
Management? [Monitoring
Service Operations
Product (concept)- Packaged Product Management Value Added Services
¢ OI’ Central CRM? Development J 9
| Product . .
Combinations & options ICnI\lleer;i F?r:f:cte
| ; ;i Management §| Management
. portfolio pricing
* Where to register
_ 1 Payments Savings Investing Financing
Touchpoints DEveiEAmEE
— Contact Information Management
. Agreements
— Product/Services in Use Execution

- - Monitoring
— Customer Satisfaction —

Asset management
‘ (W) @raimondb

NN

4 ldentifying Bounded Contexts with a CU-matrix

2. Plot Involved Aggregates

dienstencatalog

1. Plot Business Functions /
Capabilities

4. Shift rows and columns
collecting C’s together

Aggregates / Business Objects

Standaardaanvragengegeye
Frojectranagementgegey ens
Changegevens
Testrmanagementgegey ens
Beschikbaarheids/capaciteitsa

Cpdrachtenadministratie

Frojectgegevens
Serece lewal gegey ens

Managementinfarmatie
Fro

Procesgegevens
Designgegevens
Klantmeldingen
Incidentgegevens
Problemgegevens
Klantgegevens

Y

Fortfoliomanagement

Architectuurmanagement
Pracesmanagement 3. C : Creation/Commands
Standaardaanvragen | U: Used (Read or Events) C
Crdermanagernent
Frojectmanagement [~ \

Specificatiemanagement u = 7/\\
& /
C

Change management 1)

Design C 1)

Realisation C g CJu 5. Identify Bounded Contexts
Based on Cohesion and Loose

Coupling

e |Portfoliogegevens /

D |Architectuur

T

-
]

Business Functiong

=
]
=
]
]

R

Test
Incident management C U N
Froblerm management C C u
Capacity-, availability & continuity management U C C/lC|U|C Ufu|C C
Call f Service desk management C C C\C

sewvice level management U fulc

How to Decide?

Central Both Local
» Typical choice in “SOA era” « Strategic DDD focused » Typical current choice
« Based on Data Integrity * Factor Aggregates based on « Tactical DDD focused
« Too Little View on Process Both Data & Process * “Process Task” Driven
« Too much generalization * Optimized Choice, multi-level « Too Little view on Big Picture

(W) @raimondb

Smart Reuse by splitting local and corporate responsibilities

Customer Engagement

Omni-channel Customer Interaction

Packaged Marketing Advice Sales Service
Product Reqguests

Offering [Client Profile [Client Profile [Client Profile [Client Profile

Online | Online | Online | Online | Online

Offine | Offine I Offine | Offine | Offine

Monitoring | Monitoring | Monitoring | Monitoring [Monitoring

Service Operations

Product (concept)-
Development

Packaged Product Management Value Added Services

Product

Combinations & options ClEelis L=

Invest Finance
Management | Management

portfolio pricing

Payments

Savings

Investing

Financing

Development

Development

Development

Development

Management

Management

Management

Management

Agreements

Agreements

Agreements

Agreements

Execution

Execution

Execution

Execution

Monitoring

Monitoring

Monitoring

Asset management

Monitoring

Facilities

Customer

Management

Customer

Touchpoint

Used Services

Contract
Agreement

Management

Customer
Payment
Preferences

Payment Contract
Renewal

Other Opportunities

Output
Management
(execution)

Data Analytics
(monitoring)

Packaged Product
Management

Model Contract
Agreement

Active Services
Portfolio

Reuse Conclusions

« Take off your Blinkers!
Find your balance by Middle Out

Strategic DDD
— Big Picture Bounded Contexts using Business Capability Maps
— “Top Down”

Tactical DDD
— Refine Context splits & Boundaries using Event Storming
— “Bottom up”

>

Managing

o
O
-
O
o)
S
&,
-
LL]

4 Modularity Evolution

Core

Components

Transistor, Resistor, Cap

3GL Language
Compilers

C:

We are starting to catch up
The tools are in place ©

Maven:
NuGet:
NPM:

The Bad News:

IT Is wildly running behind in delivering high
level modularized solutions

The Good News:

Docker:

ystems
ture

5 Architectures

erfacing Standards
Storage)

Infra & Functions
>loud)

Kubernetes:
Limited Functional standards

4 Repeating Patterns

— Managing complexity in Hardware

because of muti-level modularization
» Hiding internals

» Explicit Interface

» Good old OOP Practices

— Nature manages complexity by
repeating patterns (aka Fractals)

4 Back to the Deathstars..

« 2D “Single Level”’ Bounded Context ¢ 3D “Fractal” Bounded Contexts

. Little OO Principles @ organization ~ * A Context has its own Language at
scale each Level

» Deeper levels can have more
specialized communications

(W) @raimondb

Multi-level Ubigquitous Language

Corporate Customer
Management Show

Customer Used Services Service
Contract Contract

Touchpoint Agreement Template

Activate
Customer

Juswabebuz Jawoisn)d

Customer

) Service
Service
General E (Command) @ Activated (Event)
Language — =

Single and
Packaged Product Active Services Model Contract combined
SUEIDRIE RIS Portfolio Agreement products
supported

Adding new
services does
not ripple

Specific Open Payment @ Payment Account
Language Account (Command) Opened (Event)

Payments Account Savings... Irvesting...
Management

suoneladQ) 921M8S

Customer

Payment Payment Payment Contract
Account Preferences Renewal

But isn’t this BDUF?

Business Capabilities for “Rough Boundaries”

Define high level Ubiquitous Language
— Only Primary Business Concepts

Refine with Event Storming
(Re-)establish “external interface” every time
With each new Bounded Context also try to establish parent Context /

Domain

y

4 Take Aways

« Smaller is not always < Big Picture Analysis to -« “Fractalize” your Bounded
better identify Balanced Reuse Contexts to manage
complexity

@

(W) @raimondb

Questions?

Raimond.Brookman@infosupport.com

@raimondb

_[nfofupport

Solid Innovator

mailto:Raimond.Brookman@infosupport.com

Thanks!

Come see us at our Booth for further
discussions!

Raimond.Brookman@infosupport.com

@raimondb

_[nfofupport

Solid Innovator

mailto:Raimond.Brookman@infosupport.com

